Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 1296
Journal of earth science (Wuhan, China), 2013-12, Vol.24 (6), p.1023-1032
2013
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Surrogate Model Application to the Identification of an Optimal Surfactant-Enhanced Aquifer Remediation Strategy for DNAPL-Contaminated Sites
Ist Teil von
  • Journal of earth science (Wuhan, China), 2013-12, Vol.24 (6), p.1023-1032
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2013
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • A surrogate model is introduced for identifying the optimal remediation strategy for Dense Non-Aqueous Phase Liquids (DNAPL)-contaminated aquifers. A Latin hypercube sampling (LHS) method was used to collect data in the feasible region for input variables. A surrogate model of the multi-phase flow simulation model was developed using a radial basis function artificial neural network (RBFANN). The developed model was applied to a perchloroethylene (PCE)-contaminated aquifer remediation optimization problem. The relative errors of the average PCE removal rates be- tween the surrogate model and simulation model for 10 validation samples were lower than 5%, which is high approximation accuracy. A comparison of the surrogate-based simulation optimization model and a conventional simulation optimization model indicated that RBFANN surrogate model developed in this paper considerably reduced the computational burden of simulation optimization processes.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX