Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Surrogate Model Application to the Identification of an Optimal Surfactant-Enhanced Aquifer Remediation Strategy for DNAPL-Contaminated Sites
Ist Teil von
Journal of earth science (Wuhan, China), 2013-12, Vol.24 (6), p.1023-1032
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2013
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
A surrogate model is introduced for identifying the optimal remediation strategy for Dense Non-Aqueous Phase Liquids (DNAPL)-contaminated aquifers. A Latin hypercube sampling (LHS) method was used to collect data in the feasible region for input variables. A surrogate model of the multi-phase flow simulation model was developed using a radial basis function artificial neural network (RBFANN). The developed model was applied to a perchloroethylene (PCE)-contaminated aquifer remediation optimization problem. The relative errors of the average PCE removal rates be- tween the surrogate model and simulation model for 10 validation samples were lower than 5%, which is high approximation accuracy. A comparison of the surrogate-based simulation optimization model and a conventional simulation optimization model indicated that RBFANN surrogate model developed in this paper considerably reduced the computational burden of simulation optimization processes.