Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Axle Load Distribution for Mechanistic–Empirical Pavement Design in North Carolina: Multidimensional Clustering Approach and Decision Tree Development
Ist Teil von
Transportation research record, 2011, Vol.2256 (1), p.159-168
Ort / Verlag
Los Angeles, CA: SAGE Publications
Erscheinungsjahr
2011
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
A multidimensional clustering approach to generate regional average truck axle load distribution factors (ALDFs) for North Carolina is presented. The results support the Mechanistic–Empirical Pavement Design Guide (MEPDG). Weigh-in-motion data collected on North Carolina roadways are used in the analysis. A multidimensional clustering analysis based on ALDF data develops representative clusters for different highway functional classifications. Findings show that ALDF clusters have distinct characteristics for primary roads, secondary roads, collectors, and local roads. An easy-to-use decision tree based on available traffic parameters and local knowledge helps the pavement designer select the proper ALDF input. Specific contributions include a multidimensional clustering analysis that is guided by MEPDG damage-based analysis, well-defined ALDF clusters that represent specific traffic patterns in North Carolina, and a decision tree characterized by its simplicity to help pavement designers select ALDF inputs.