Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 78
Proceedings of the IEEE, 2004-03, Vol.92 (3), p.401-422
2004
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Unscented filtering and nonlinear estimation
Ist Teil von
  • Proceedings of the IEEE, 2004-03, Vol.92 (3), p.401-422
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2004
Quelle
IEEE Xplore Digital Library
Beschreibungen/Notizen
  • The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear on the time scale of the updates. Many of these difficulties arise from its use of linearization. To overcome this limitation, the unscented transformation (UT) was developed as a method to propagate mean and covariance information through nonlinear transformations. It is more accurate, easier to implement, and uses the same order of calculations as linearization. This paper reviews the motivation, development, use, and implications of the UT.
Sprache
Englisch
Identifikatoren
ISSN: 0018-9219
eISSN: 1558-2256
DOI: 10.1109/JPROC.2003.823141
Titel-ID: cdi_proquest_miscellaneous_1671273902

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX