Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 81

Details

Autor(en) / Beteiligte
Titel
Uncertainty-Driven Efficiently-Sampled Sparse Graphical Models for Concurrent Tumor Segmentation and Atlas Registration
Ist Teil von
  • 2013 IEEE International Conference on Computer Vision, 2013, p.641-648
Ort / Verlag
IEEE
Erscheinungsjahr
2013
Quelle
IEEE/IET Electronic Library (IEL)
Beschreibungen/Notizen
  • Graph-based methods have become popular in recent years and have successfully addressed tasks like segmentation and deformable registration. Their main strength is optimality of the obtained solution while their main limitation is the lack of precision due to the grid-like representations and the discrete nature of the quantized search space. In this paper we introduce a novel approach for combined segmentation/registration of brain tumors that adapts graph and sampling resolution according to the image content. To this end we estimate the segmentation and registration marginals towards adaptive graph resolution and intelligent definition of the search space. This information is considered in a hierarchical framework where uncertainties are propagated in a natural manner. State of the art results in the joint segmentation/registration of brain images with low-grade gliomas demonstrate the potential of our approach.
Sprache
Englisch
Identifikatoren
ISSN: 1550-5499
eISSN: 2380-7504
DOI: 10.1109/ICCV.2013.85
Titel-ID: cdi_proquest_miscellaneous_1669895232

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX