Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
The roles that ozone and nitric oxide (NO), the chief O3 precursor, play in the antioxidative balance and inducible volatile emissions of lima bean were assessed. Exposure to O3 inhibited APX, CAT, and GR, decreased GSH content and induced emissions of (E)-β-ocimene, limonene, 1,8-cineole, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (E)-DMNT, 2-butanone and nonanal. O3 did not induce emissions of (E)-β-caryophyllene and appeared to reduce the antioxidative capacity of plants to a greater extent than NO and NO followed by O3 (NO/O3) treatments. There were significant differences in emissions of (E)-β-ocimene and linalool between NO/O3 treated plants and controls, but no differences in antioxidant concentrations. A model to explain the relationships between the ascorbate–glutathione cycle and O3 and NO inducible volatiles was proposed. Our findings suggest that prior exposure to NO modulates the oxidative effect of ozone by the process of cross-tolerance, which might regulate the antioxidative system and induction of volatile organic compounds.
•NO and O3 disturb antioxidant defenses and cause lipid peroxidation in lima bean plants.•Exposure to NO before exposure to O3 does not alter the antioxidant defenses and malondialdehyde levels.•The total sum of induced volatiles is reduced in plants that are exposed to NO and then O3.•The antioxidant system and induced VOC emission were balanced by pre-exposure to NO before O3.
Nitric oxide modulates the ozone-induced oxidative stress in lima bean by cross-tolerance effect.