Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 3668

Details

Autor(en) / Beteiligte
Titel
A Multiscale and Hierarchical Feature Extraction Method for Terrestrial Laser Scanning Point Cloud Classification
Ist Teil von
  • IEEE transactions on geoscience and remote sensing, 2015-05, Vol.53 (5), p.2409-2425
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2015
Link zum Volltext
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • The effective extraction of shape features is an important requirement for the accurate and efficient classification of terrestrial laser scanning (TLS) point clouds. However, the challenge of how to obtain robust and discriminative features from noisy and varying density TLS point clouds remains. This paper introduces a novel multiscale and hierarchical framework, which describes the classification of TLS point clouds of cluttered urban scenes. In this framework, we propose multiscale and hierarchical point clusters (MHPCs). In MHPCs, point clouds are first resampled into different scales. Then, the resampled data set of each scale is aggregated into several hierarchical point clusters, where the point cloud of all scales in each level is termed a point-cluster set. This representation not only accounts for the multiscale properties of point clouds but also well captures their hierarchical structures. Based on the MHPCs, novel features of point clusters are constructed by employing the latent Dirichlet allocation (LDA). An LDA model is trained according to a training set. The LDA model then extracts a set of latent topics, i.e., a feature of topics, for a point cluster. Finally, to apply the introduced features for point-cluster classification, we train an AdaBoost classifier in each point-cluster set and obtain the corresponding classifiers to separate the TLS point clouds with varying point density and data missing into semantic regions. Compared with other methods, our features achieve the best classification results for buildings, trees, people, and cars from TLS point clouds, particularly for small and moving objects, such as people and cars.
Sprache
Englisch
Identifikatoren
ISSN: 0196-2892
eISSN: 1558-0644
DOI: 10.1109/TGRS.2014.2359951
Titel-ID: cdi_proquest_miscellaneous_1669850405

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX