Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 254
The Science of the total environment, 2015-01, Vol.503-504, p.258-268
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Drivers influencing streamflow changes in the Upper Turia basin, Spain
Ist Teil von
  • The Science of the total environment, 2015-01, Vol.503-504, p.258-268
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2015
Quelle
MEDLINE
Beschreibungen/Notizen
  • Many rivers across the world have experienced a significant streamflow reduction over the last decades. Drivers of the observed streamflow changes are multiple, including climate change (CC), land use and land cover changes (LULCC), water transfers and river impoundment. Many of these drivers inter-act simultaneously, making it difficult to discern the impact of each driver individually. In this study we isolate the effects of LULCC on the observed streamflow reduction in the Upper Turia basin (east Spain) during the period 1973–2008. Regression models of annual streamflow are fitted with climatic variables and also additional time variant drivers like LULCC. The ecohydrological model SWAT is used to study the magnitude and sign of streamflow change when LULCC occurs. Our results show that LULCC does play a significant role on the water balance, but it is not the main driver underpinning the observed reduction on Turia's streamflow. Increasing mean temperature is the main factor supporting increasing evapotranspiration and streamflow reduction. In fact, LULCC and CC have had an offsetting effect on the streamflow generation during the study period. While streamflow has been negatively affected by increasing temperature, ongoing LULCC have positively compensated with reduced evapotranspiration rates, thanks to mainly shrubland clearing and forest degradation processes. These findings are valuable for the management of the Turia river basin, as well as a useful approach for the determination of the weight of LULCC on the hydrological response in other regions. •Temperature increase is a key variable explaining streamflow reduction in UTB.•Additional drivers impact streamflow changes beyond climate variability.•Without climate variability, LULCC would have increased streamflow.•Shrubland clearing and forest degradation have been the prevailing LULCC processes.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX