Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 1622706
Nature (London), 2012-08, Vol.488 (7410), p.197-200
2012
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Water balance of global aquifers revealed by groundwater footprint
Ist Teil von
  • Nature (London), 2012-08, Vol.488 (7410), p.197-200
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2012
Quelle
EBSCOhost Psychology and Behavioral Sciences Collection
Beschreibungen/Notizen
  • A newly developed concept called ‘groundwater footprint’ is used to reveal the degree of sustainable use of global aquifers by calculating the area relative to the extractive demands; globally, this footprint exceeds aquifer area by a factor of about 3.5, and excess withdrawal is centred on just a few agriculturally important aquifers. Striking a balance on groundwater usage In many parts of the world, groundwater is being extracted for agricultural use and human consumption at a greater rate than the Earth's natural systems can replace it. Tom Gleeson and colleagues estimate the true scale of the problem using a newly developed concept called the 'groundwater footprint' — defined as the area required to sustain groundwater use and groundwater-dependent ecosystem services. The authors find that globally, the groundwater footprint exceeds the aquifer area by a factor of about 3.5. Overexploitation centres predominantly on a few agriculturally important aquifers in arid or semiarid climates, especially in Asia and North America. The groundwater footprint could serve as a useful framework for analysing the global groundwater depletion data sets emerging from NASA's GRACE satellites. Groundwater is a life-sustaining resource that supplies water to billions of people, plays a central part in irrigated agriculture and influences the health of many ecosystems 1 , 2 . Most assessments of global water resources have focused on surface water 3 , 4 , 5 , 6 , but unsustainable depletion of groundwater has recently been documented on both regional 7 , 8 and global scales 9 , 10 , 11 . It remains unclear how the rate of global groundwater depletion compares to the rate of natural renewal and the supply needed to support ecosystems. Here we define the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services) and show that humans are overexploiting groundwater in many large aquifers that are critical to agriculture, especially in Asia and North America. We estimate that the size of the global groundwater footprint is currently about 3.5 times the actual area of aquifers and that about 1.7 billion people live in areas where groundwater resources and/or groundwater-dependent ecosystems are under threat. That said, 80 per cent of aquifers have a groundwater footprint that is less than their area, meaning that the net global value is driven by a few heavily overexploited aquifers. The groundwater footprint is the first tool suitable for consistently evaluating the use, renewal and ecosystem requirements of groundwater at an aquifer scale. It can be combined with the water footprint and virtual water calculations 12 , 13 , 14 , and be used to assess the potential for increasing agricultural yields with renewable groundwaterref 15 . The method could be modified to evaluate other resources with renewal rates that are slow and spatially heterogeneous, such as fisheries, forestry or soil.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX