Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Analytical Approximation of the Blasius Similarity Solution with Rigorous Error Bounds
Ist Teil von
SIAM journal on mathematical analysis, 2014-01, Vol.46 (6), p.3782-3813
Erscheinungsjahr
2014
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
We use a recently developed method [O. Costin, M. Huang, and W. Schlag, Nonlinearity , 25 (2012), pp. 125--164], [O. Costin, M. Huang, and S. Tanveer, Duke Math. J. , 163 (2014), pp. 665--704] to find accurate analytic approximations with rigorous error bounds for the classic similarity solution of Blasius of the boundary layer equation in fluid mechanics, the two-point boundary value problem $f\prime \prime \prime} + f f\prime \prime} =0$ with $f(0)=f logical or prime (0)=0$ and $\lim_{x \rightarrow \infty} f logical or prime (x) =1$. The approximation is given in terms of a polynomial in $[0, \frac{5}{2}]$ and in terms of the error function in $[\frac{5}{2}, \infty)$. The two representations for the solution in different domains match at $x=\frac{5}{2}$ determining all free parameters in the problem, in particular $f\prime \prime} (0) =0.469600 \pm 0.000022$ at the wall. The method can in principle provide approximations to any desired accuracy for this or wide classes of linear or nonlinear differential equations with initial or boundary value conditions. The analysis relies on controlling the errors in the approximation through contraction mapping arguments, using energy bounds for the Green's function of the linearized problem.