Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 478
International journal of systems science, 2015-04, Vol.46 (6), p.1108-1112
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
An ensemble of k-nearest neighbours algorithm for detection of Parkinson's disease
Ist Teil von
  • International journal of systems science, 2015-04, Vol.46 (6), p.1108-1112
Ort / Verlag
Taylor & Francis
Erscheinungsjahr
2015
Quelle
Taylor & Francis Journals Auto-Holdings Collection
Beschreibungen/Notizen
  • Parkinson's disease is a disease of the central nervous system that leads to severe difficulties in motor functions. Developing computational tools for recognition of Parkinson's disease at the early stages is very desirable for alleviating the symptoms. In this paper, we developed a discriminative model based on a selected feature subset and applied several classifier algorithms in the context of disease detection. All classifier performances from the point of both stand-alone and rotation-forest ensemble approach were evaluated on a Parkinson's disease data-set according to a blind testing protocol. The new method compared to hitherto methods outperforms the state-of-the-art in terms of both predictions of accuracy (98.46%) and area under receiver operating characteristic curve (0.99) scores applying rotation-forest ensemble k-nearest neighbour classifier algorithm.
Sprache
Englisch
Identifikatoren
ISSN: 0020-7721
eISSN: 1464-5319
DOI: 10.1080/00207721.2013.809613
Titel-ID: cdi_proquest_miscellaneous_1651399088

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX