Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 58934

Details

Autor(en) / Beteiligte
Titel
Pore-scale imaging and modelling
Ist Teil von
  • Advances in water resources, 2013-01, Vol.51, p.197-216
Ort / Verlag
Kidlington: Elsevier Ltd
Erscheinungsjahr
2013
Quelle
Access via ScienceDirect (Elsevier)
Beschreibungen/Notizen
  • ► We review pore-scale imaging and modelling. ► We present a methodology to predict flow and transport properties. ► We analyze dispersion in carbonates. ► We image residual carbon dioxide at super-critical conditions at the pore scale. ► We compare predicted relative permeability with core-scale measurements. Pore-scale imaging and modelling – digital core analysis – is becoming a routine service in the oil and gas industry, and has potential applications in contaminant transport and carbon dioxide storage. This paper briefly describes the underlying technology, namely imaging of the pore space of rocks from the nanometre scale upwards, coupled with a suite of different numerical techniques for simulating single and multiphase flow and transport through these images. Three example applications are then described, illustrating the range of scientific problems that can be tackled: dispersion in different rock samples that predicts the anomalous transport behaviour characteristic of highly heterogeneous carbonates; imaging of super-critical carbon dioxide in sandstone to demonstrate the possibility of capillary trapping in geological carbon storage; and the computation of relative permeability for mixed-wet carbonates and implications for oilfield waterflood recovery. The paper concludes by discussing limitations and challenges, including finding representative samples, imaging and simulating flow and transport in pore spaces over many orders of magnitude in size, the determination of wettability, and upscaling to the field scale. We conclude that pore-scale modelling is likely to become more widely applied in the oil industry including assessment of unconventional oil and gas resources. It has the potential to transform our understanding of multiphase flow processes, facilitating more efficient oil and gas recovery, effective contaminant removal and safe carbon dioxide storage.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX