Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 10454
Econometrica, 2014-11, Vol.82 (6), p.2295-2326
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
ROBUST NONPARAMETRIC CONFIDENCE INTERVALS FOR REGRESSION-DISCONTINUITY DESIGNS
Ist Teil von
  • Econometrica, 2014-11, Vol.82 (6), p.2295-2326
Ort / Verlag
Oxford, UK: Econometric Society
Erscheinungsjahr
2014
Quelle
Wiley Online Library - AutoHoldings Journals
Beschreibungen/Notizen
  • In the regression-discontinuity (RD) design, units are assigned to treatment based on whether their value of an observed covariate exceeds a known cutoff. In this design, local polynomial estimators are now routinely employed to construct confidence intervals for treatment effects. The performance of these confidence intervals in applications, however, may be seriously hampered by their sensitivity to the specific bandwidth employed. Available bandwidth selectors typically yield a "large" bandwidth, leading to data-driven confidence intervals that may be biased, with empirical coverage well below their nominal target. We propose new theory-based, more robust confidence interval estimators for average treatment effects at the cutoff in sharp RD, sharp kink RD, fuzzy RD, and fuzzy kink RD designs. Our proposed confidence intervals are constructed using a bias-corrected RD estimator together with a novel standard error estimator. For practical implementation, we discuss mean squared error optimal bandwidths, which are by construction not valid for conventional confidence intervals but are valid with our robust approach, and consistent standard error estimators based on our new variance formulas. In a special case of practical interest, our procedure amounts to running a quadratic instead of a linear local regression. More generally, our results give a formal justification to simple inference procedures based on increasing the order of the local polynomial estimator employed. We find in a simulation study that our confidence intervals exhibit close-to-correct empirical coverage and good empirical interval length on average, remarkably improving upon the alternatives available in the literature. All results are readily available in R and STATA using our companion software packages described in Calonico, Cattaneo, and Titiunik (2014d, 2014b).

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX