Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 114
Applied geochemistry, 2013-12, Vol.39, p.150-155
2013
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Modern carbon burial in Lake Qinghai, China
Ist Teil von
  • Applied geochemistry, 2013-12, Vol.39, p.150-155
Ort / Verlag
Kidlington: Elsevier Ltd
Erscheinungsjahr
2013
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •We estimated carbon burial rates and different carbon influxes at Lake Qinghai.•The carbon burial rates are expected to be much higher in warmer periods.•A large fraction of DIC and DOC in lake water would be eventually buried.•The DIC in lake water is potential to deposit as alkaline minerals. The quantification of carbon burial in lake sediments, and carbon fluxes derived from different origins are crucial to understand modern lacustrine carbon budgets, and to assess the role of lakes in the global carbon cycle. In this study, we estimated carbon burial in the sediment of Lake Qinghai, the largest inland lake in China, and the carbon fluxes derived from different origins. We find that: (1) The organic carbon burial rate in lake sediment is approximately 7.23gm−2a−1, which is comparable to rates documented in many large lakes worldwide. We determined that the flux of riverine particulate organic carbon (POC) is approximately 10 times higher than that of dissolved organic carbon (DOC). Organic matter in lake sediments is primarily derived from POC in lake water, of which approximately 80% is of terrestrial origin. (2) The inorganic carbon burial rate in lake sediment is slightly higher than that of organic carbon. The flux of riverine dissolved inorganic carbon (DIC) is approximately 20 times that of DOC, and more than 70% of the riverine DIC is drawn directly and/or indirectly from atmospheric CO2. (3) Both DIC and DOC are concentrated in lake water, suggesting that the lake serves as a sink for both organic and inorganic carbon over long term timescales. (4) Our analysis suggests that the carbon burial rates in Lake Qinghai would be much higher in warmer climatic periods than in cold ones, implying a growing role in the global carbon cycle under a continued global warming scenario.
Sprache
Englisch
Identifikatoren
ISSN: 0883-2927
eISSN: 1872-9134
DOI: 10.1016/j.apgeochem.2013.04.004
Titel-ID: cdi_proquest_miscellaneous_1642283278

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX