Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 144

Details

Autor(en) / Beteiligte
Titel
In-Home Activity Recognition: Bayesian Inference for Hidden Markov Models
Ist Teil von
  • IEEE pervasive computing, 2014-07, Vol.13 (3), p.67-75
Ort / Verlag
New York, NY: IEEE
Erscheinungsjahr
2014
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Activity recognition in a home setting is being widely explored as a means to support elderly people living alone. Probabilistic models using classical, maximum-likelihood estimation methods are known to work well in this domain, but they are prone to overfitting and require labeled activity data for every new site. This limitation has important practical implications, because labeling activities is expensive, time-consuming, and intrusive to the monitored person. In this article, the authors use Markov Chain Monte Carlo techniques to estimate the parameters of activity recognition models in a Bayesian framework. They evaluate their approach by comparing it to a state-of-the-art maximum-likelihood method on three publicly available real-world datasets. Their approach achieves significantly better recognition performance (p less than or equal to 0.05).

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX