Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 17418
Journal of the American Chemical Society, 2014-09, Vol.136 (35), p.12265-12272
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation
Ist Teil von
  • Journal of the American Chemical Society, 2014-09, Vol.136 (35), p.12265-12272
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2014
Quelle
MEDLINE
Beschreibungen/Notizen
  • Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m2 is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst–Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.
Sprache
Englisch
Identifikatoren
ISSN: 0002-7863
eISSN: 1520-5126
DOI: 10.1021/ja503692z
Titel-ID: cdi_proquest_miscellaneous_1560098027

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX