Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 41769

Details

Autor(en) / Beteiligte
Titel
Neck proprioceptors contribute to the modulation of muscle sympathetic nerve activity to the lower limbs of humans
Ist Teil von
  • Experimental brain research, 2014-07, Vol.232 (7), p.2263-2271
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2014
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Several different strategies have now been used to demonstrate that the vestibular system can modulate muscle sympathetic nerve activity (MSNA) in humans and thereby contribute to the regulation of blood pressure during changes in posture. However, it remains to be determined how the brain differentiates between head-only movements that do not require changes in vasomotor tone in the lower limbs from body movements that do require vasomotor changes. We tested the hypothesis that neck movements modulate MSNA in the lower limbs of humans. MSNA was recorded in 10 supine young adult subjects, at rest, during sinusoidal stretching of neck muscles (100 cycles, 35° peak to peak at 0.37 ± 0.02 Hz) and during a ramp-and-hold (17.5° for 54 ± 9 s) static neck muscle stretch, while their heads were held fixed in space. Cross-correlation analysis revealed cyclical modulation of MSNA during sinusoidal neck muscle stretch (modulation index 45.4 ± 5.3 %), which was significantly less than the cardiac modulation of MSNA at rest (78.7 ± 4.2 %). Interestingly, cardiac modulation decreased significantly during sinusoidal neck displacement (63.0 ± 9.3 %). By contrast, there was no significant difference in MSNA activity during static ramp-and-hold displacements of the neck to the right or left compared with that with the head and neck aligned. These data suggest that dynamic, but not static, neck movements can modulate MSNA, presumably via projections of muscle spindle afferents to the vestibular nuclei, and may thus contribute to the regulation of blood pressure during orthostatic challenges.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX