UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Datensatz exportieren als...
BibTeX
Partial least squares discriminant analysis: taking the magic away
Journal of chemometrics, 2014-04, Vol.28 (4), p.213-225
Brereton, Richard G.
Lloyd, Gavin R.
2014
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Brereton, Richard G.
Lloyd, Gavin R.
Titel
Partial least squares discriminant analysis: taking the magic away
Ist Teil von
Journal of chemometrics, 2014-04, Vol.28 (4), p.213-225
Ort / Verlag
Chichester: Blackwell Publishing Ltd
Erscheinungsjahr
2014
Quelle
Wiley Online Library All Journals
Beschreibungen/Notizen
Partial least squares discriminant analysis (PLS‐DA) has been available for nearly 20 years yet is poorly understood by most users. By simple examples, it is shown graphically and algebraically that for two equal class sizes, PLS‐DA using one partial least squares (PLS) component provides equivalent classification results to Euclidean distance to centroids, and by using all nonzero components to linear discriminant analysis. Extensions where there are unequal class sizes and more than two classes are discussed including common pitfalls and dilemmas. Finally, the problems of overfitting and PLS scores plots are discussed. It is concluded that for classification purposes, PLS‐DA has no significant advantages over traditional procedures and is an algorithm full of dangers. It should not be viewed as a single integrated method but as step in a full classification procedure. However, despite these limitations, PLS‐DA can provide good insight into the causes of discrimination via weights and loadings, which gives it a unique role in exploratory data analysis, for example in metabolomics via visualisation of significant variables such as metabolites or spectroscopic peaks. Copyright © 2014 John Wiley & Sons, Ltd. PLS‐DA is described initially as a two‐class classifier. It is shown that under certain circumstances, its performance is identical to two well‐established statistical approaches, namely EDC and LDA. Its extensions when class sizes are unequal and when there are more than two groups are described as well as pitfalls when using PLS scores plots. Common difficulties are discussed, and it is recommended that PLS‐DA is considered as a single algorithmic step of an overall classification strategy.
Sprache
Englisch
Identifikatoren
ISSN: 0886-9383
eISSN: 1099-128X
DOI: 10.1002/cem.2609
Titel-ID: cdi_proquest_miscellaneous_1541450836
Format
–
Schlagworte
Algebra
,
Algorithms
,
Centroids
,
Chemometrics
,
Classification
,
Data processing
,
Discriminant analysis
,
Discrimination
,
Equivalence
,
Least squares method
,
Metabolites
,
Partial Least Squares
,
Two Class Classifiers
,
Variables
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX