Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
An efficient Chebyshev-tau method for solving the space fractional diffusion equations
Ist Teil von
Applied mathematics and computation, 2013-11, Vol.224, p.259-267
Ort / Verlag
Elsevier Inc
Erscheinungsjahr
2013
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Fractional diffusion equations (FDEs) have recently been paid much attention. Finding accurate and efficient methods for solving FDEs has become an active research undertaking. In this paper, an efficient method based on the shifted Chebyshev-tau idea is presented to solve an initial-boundary value problem for the FDEs. The method is derived by expanding the required approximate solution as the elements of shifted Chebyshev polynomials. Using the operational matrix of the fractional derivative, the problem can be reduced to a set of linear algebraic equations. From a computational point of view, the solution obtained by this method is in excellent agreement with those obtained by previous work in the literature and only a small number of shifted Chebyshev polynomials is needed.