Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Diagnostics of Analog Circuits Based on LS-SVM Using Time-Domain Features
Ist Teil von
Circuits, systems, and signal processing, 2013-12, Vol.32 (6), p.2683-2706
Ort / Verlag
Boston: Springer US
Erscheinungsjahr
2013
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Most researchers use wavelet transforms to extract features from a time-domain transient response from analog circuits to train classifiers such as neural networks (NNs) and support vector machines (SVMs) for analog circuit diagnostics. In this paper, we have proposed some new feature selection methods from a time-domain transient response, and compared the diagnostic results based on a least squares SVM (LS-SVM) using different time-domain feature vectors. First, we have improved two traditional feature selection methods: (a) using the mean and standard deviation in wavelet transform features, and (b) using the mean, standard deviation, skewness, kurtosis, and entropy in statistical property features. Then, a conventional time-domain feature vector based on the impulse response properties of a control system has been proposed. The simulation experiments for a leapfrog filter and a nonlinear rectifier show that: (1) the two improved methods have better accuracy than the traditional methods; (2) the proposed conventional time-domain feature vector is effective in the diagnostics of analog circuits—over 99 % for both of the two example circuits; (3) the proposed diagnostic method can diagnose soft faults, hard faults, and multi-faults, regardless of component tolerances and nonlinearity effects.