Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 43

Details

Autor(en) / Beteiligte
Titel
Dispersion, deposition and impacts of atmospheric ammonia: quantifying local budgets and spatial variability
Ist Teil von
  • Environmental pollution (1987), 1998, Vol.102 (1), p.349-361
Ort / Verlag
Oxford: Elsevier Ltd
Erscheinungsjahr
1998
Link zum Volltext
Quelle
Elsevier Journal Backfiles on ScienceDirect (DFG Nationallizenzen)
Beschreibungen/Notizen
  • Ammonia is a reactive pollutant emitted primarily by agricultural sources near ground level in the rural environment. The consequence of these factors is that, in addition to the effects of long-range pollutant transport, ammonia has major effects at a local scale, with emission and receptor areas often closely located in the rural landscape. There is a substantial local spatial variability that needs to be considered in effects assessments, while variations in local deposition may affect the amount of ammonia available for impacts further afield. The wide-ranging UK programme ADEPT (Ammonia Distribution and Effects ProjecT) has addressed these issues through a combination of measurement and modelling activities concerning the distribution of emissions, atmospheric transport, deposition and effects assessment. The results are illustrated here by summarizing the findings of a joint experiment at Burrington Moor, Devon, and wider modelling contrasting the variability at a field scale with 5 km resolution estimates for the UK. The fraction of emitted NH 3 deposited locally is shown to depend critically on the downwind land-cover, with fluxes being dependent on interactions with the ammonia compensation point. This will restrict deposition back to agricultural land, but may mean that non-conservation woodlands could be of benefit to recapture a significant fraction of emissions. The generalized models demonstrate the high spatial variability of ammonia impacts, with a case study being used to show the consequences at a field scale. In source regions substantial variability occurs at sub-1 km levels and this will have major consequences for the emission reduction targets needed to protect ecosystems.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX