Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Biomineralization, the natural pathway of assembling biogenic inorganic compounds, inspires us to exploit unique, effective strategies to fabricate functional materials with intricate structures. In this article, the recent advances in bio‐inspired synthesis of minerals—with a focus on those of calcium‐based minerals—and their applications to the design of functional materials for energy, environment, and biomedical fields are reviewed. Biomimetic mineralization is extending its application range to unconventional area such as the design of component materials for lithium‐ion batteries and elaborately structured composite materials utilizing carbon dioxide gas. Materials with highly enhanced mechanical properties are synthesized through emulating the nacre structure. Studies of bioactive minerals‐carbon hybrid materials show an expansion of potential applications to fields ranging from interdisciplinary science to practical engineering such as the fabrication of reinforced bone‐implantable materials.
The continuously expanding application scope of bio‐inspired (or biomimetic) mineralization is reviewed. Current applications of bio‐inspired mineralization range from energy to healthcare through the development of advanced functional materials via the interconnection and combination of different reseach fields.