Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 14727
Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2012-09, Vol.14 (9), p.1-13, Article 1121
2012
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Length scale effects of friction in particle compaction using atomistic simulations and a friction scaling model
Ist Teil von
  • Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2012-09, Vol.14 (9), p.1-13, Article 1121
Ort / Verlag
Dordrecht: Springer Netherlands
Erscheinungsjahr
2012
Quelle
SpringerLink
Beschreibungen/Notizen
  • The objective of this study is to illustrate and quantify the length scale effects related to interparticle friction under compaction. Previous studies have shown as the length scale of a specimen decreases, the strength of a single crystal metal or ceramic increases. The question underlying this research effort continues the thought—If there is a length scale parameter related to the strength of a material, is there a length scale parameter related to friction? To explore the length scale effects of friction, molecular dynamics (MD) simulations using an embedded atom method potential were performed to analyze the compression of two spherical FCC nickel nanoparticles at different contact angles. In the MD model study, we applied a macroscopic plastic contact formulation to determine the normal plastic contact force at the particle interfaces and used the average shear stress from the MD simulations to determine the tangential contact forces. Combining this information with the Coulomb friction law, we quantified the MD interparticle coefficient of friction and showed good agreement with experimental studies and a Discrete Element Method prediction as a function of contact angle. Lastly, we compared our MD simulation friction values to the tribological predictions of Bhushan and Nosonovsky (BN), who developed a friction scaling model based on strain gradient plasticity and dislocation-assisted sliding that included a length scale parameter. The comparison revealed that the BN elastic friction scaling model did a much better job than the BN plastic scaling model of predicting the coefficient of friction values obtained from the MD simulations.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX