Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 7786

Details

Autor(en) / Beteiligte
Titel
Improved water-level forecasting for the Northwest European Shelf and North Sea through direct modelling of tide, surge and non-linear interaction
Ist Teil von
  • Ocean dynamics, 2013-07, Vol.63 (7), p.823-847
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2013
Link zum Volltext
Quelle
SpringerLink (Online service)
Beschreibungen/Notizen
  • In real-time operational coastal forecasting systems for the northwest European shelf, the representation accuracy of tide–surge models commonly suffers from insufficiently accurate tidal representation, especially in shallow near-shore areas with complex bathymetry and geometry. Therefore, in conventional operational systems, the surge component from numerical model simulations is used, while the harmonically predicted tide, accurately known from harmonic analysis of tide gauge measurements, is added to forecast the full water-level signal at tide gauge locations. Although there are errors associated with this so-called astronomical correction (e.g. because of the assumption of linearity of tide and surge), for current operational models, astronomical correction has nevertheless been shown to increase the representation accuracy of the full water-level signal. The simulated modulation of the surge through non-linear tide–surge interaction is affected by the poor representation of the tide signal in the tide–surge model, which astronomical correction does not improve. Furthermore, astronomical correction can only be applied to locations where the astronomic tide is known through a harmonic analysis of in situ measurements at tide gauge stations. This provides a strong motivation to improve both tide and surge representation of numerical models used in forecasting. In the present paper, we propose a new generation tide–surge model for the northwest European Shelf (DCSMv6). This is the first application on this scale in which the tidal representation is such that astronomical correction no longer improves the accuracy of the total water-level representation and where, consequently, the straightforward direct model forecasting of total water levels is better. The methodology applied to improve both tide and surge representation of the model is discussed, with emphasis on the use of satellite altimeter data and data assimilation techniques for reducing parameter uncertainty. Historic DCSMv6 model simulations are compared against shelf wide observations for a full calendar year. For a selection of stations, these results are compared to those with astronomical correction, which confirms that the tide representation in coastal regions has sufficient accuracy, and that forecasting total water levels directly yields superior results.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX