Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 52

Details

Autor(en) / Beteiligte
Titel
Blocking human enterovirus 71 replication by targeting viral 2A protease
Ist Teil von
  • Journal of antimicrobial chemotherapy, 2012-12, Vol.67 (12), p.2865-2869
Ort / Verlag
Oxford: Oxford University Press
Erscheinungsjahr
2012
Link zum Volltext
Quelle
Oxford Journals 2020 Medicine
Beschreibungen/Notizen
  • Human enterovirus 71 (EV-71), a member of the Enterovirus genus, constitutes a major public health issue in the Asia-Pacific region, where it is associated with several severe neurological complications. There is currently no effective vaccine or antiviral against EV-71. The aim of this study was to determine whether the six amino acid peptide LVLQTM, which was previously shown to inhibit human rhinovirus (HRV) 2A protease (2A(pro)) activity in vitro and HRV replication in vivo in mice, could be of more general use against enteroviruses and more particularly against EV-71. To investigate whether the LVLQTM peptide was a pseudosubstrate of EV-71 2A(pro), a recombinant luciferase containing the LVLQTM sequence was designed so that recognition of this sequence by 2A(pro) led to luciferase activation. Direct interaction between EV-71 2A(pro) and the LVLQTM peptide was further confirmed by isothermal titration calorimetry. We then tested the effects of the peptide on EV-71 2A(pro) cleavage activity and EV-71 replication in HeLa cells. We showed that the LVLQTM peptide behaved as an effective substrate analogue of EV-71 2A(pro), which binds into the active site of the protease with a dissociation rate constant of 9.6 μM. Moreover, LVLQTM significantly inhibited eIF4G cleavage activity of 2A(pro) as well as EV-71 replication in HeLa cells. This study demonstrates that the LVLQTM peptide that has previously been shown to inhibit HRV replication is also an effective inhibitor of EV-71 2A(pro) and therefore of EV-71 replication, opening new doors in the development of new antivirals against EV-71.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX