Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 40

Details

Autor(en) / Beteiligte
Titel
Epimedium-Derived Flavonoids Modulate the Balance between Osteogenic Differentiation and Adipogenic Differentiation in Bone Marrow Stromal Cells of Ovariectomized Rats via Wnt/β-Catenin Signal Pathway Activation
Ist Teil von
  • Chinese journal of integrative medicine, 2012-12, Vol.18 (12), p.909-917
Ort / Verlag
Heidelberg: Chinese Association of Traditional and Western Medicine
Erscheinungsjahr
2012
Quelle
MEDLINE
Beschreibungen/Notizen
  • Objective: To observe the function of wnt/β-catenin signal pathway on the process that epimedium-derived flavonoids (EFs) regulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal ceils of ovariectomized rats, and to provide an experimental evidence for the mechanism of EFs on treating postmenopausal osteoporosis. Methods: Bone marrow stromal cells from ovariectomized rats were separated and cultivated in the condition of osteoinductive medium or liquid medium for 15 days. Low- (1 μg/mL), medium- (10 μg/mL) and high- (100 μg/mL) dose EFs were administrated correspondingly. Alkaline phosphatase (ALP) staining, ALP activity determination, oil red O staining and real- time polymerese chain reaction (RT-PCR) were used to determine the effect of EFs on osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats. Moreover, in order to explore the mechanism of EFs on osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats, Dickkopf-related protein 1 (DKK1) was used in the medium group. Enzyme linked immunosorbent assay (ELISA) and RT-PCR were used to determine mRNA levels of 13-catenin, low density lipoprotein receptor-related protein 5 (LRP5) and T cell factor (TCF) protein, known as wnt/β-catenin signal pathway related factors. Results: EFs increased mRNA expression levels of ALP and early osteoblast differentiation factors, such as runt-related transcription factor 2 (Runx2), osteocaicin and collagen I, and decreased mRNA expression levels of fat generation factors, such as peroxisome proliferator activated receptor gamma 2 (PPAR r/-2) and CCAAT enhancer-binding protein-α (C/EBP α) in a dose-dependent manner. While osteobiast differentiation factors were down-regulated, fat generation factors were up-regulated when DKK1 was applied. Also EFs up-regulated mRNA expression levels of β-catenin, LRP5 and TCF protein which could be blocked by DKK1. Conclusion: EFs regulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats by activating wnt/13-catenin signal pathway, which may be an important molecular mechanism of EFs on treatinq DostmenoDausal osteoDorosis.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX