Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 2277
Osteoarthritis and cartilage, 2012-09, Vol.20 (9), p.1039-1045
2012
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Genomic chondrocyte culture profiling by array-CGH, interphase-FISH and RT-PCR
Ist Teil von
  • Osteoarthritis and cartilage, 2012-09, Vol.20 (9), p.1039-1045
Ort / Verlag
England: Elsevier Ltd
Erscheinungsjahr
2012
Quelle
Elsevier ScienceDirect Journals
Beschreibungen/Notizen
  • Summary Objective In vitro expansion is an important step to acquire sufficient cells in human tissue engineering technologies. The high number of chondrocytes needed for human articular cartilage implants requires in vitro expansion of the primary cells, bearing a theoretical risk of in vitro induced changes in the genomes. To gain more insights into this situation, model cultures were prepared and analyzed. Design 25 chondrocyte cell DNA samples from nine donors were analyzed by array comparative genomic hybridization (aCGH) on whole genome level and 28 chondrocyte cell samples from 16 individuals were analyzed by fluorescence in situ hybridization (FISH) on single cell level. The expanded cells were further characterized upon the chondrocytic mRNA phenotype by reverse-transciptase polymerase chain reaction (RT-PCR). Results The molecular karyotyping results revealed autosomal stability, but all male samples analyzed by aCGH displayed a variable loss of the Y-chromosome. These data were confirmed by FISH-experiments and suggest an age dependant effect toward the loss of the Y-chromosome in cultured chondrocytes. RT-PCR data for the mRNAs from collagen types I, II, and aggrecan and the pro-inflammatory cytokine interleukin-1ß (IL-1ß) did not reveal any correlation of transcriptional activity in cultures with Y-chromosome losses, nor were there statistically significant differences between cells from female and male donors. Conclusions While cells of male origin may suffer from an age-related loss of the Y-chromosome, there was no indication of a functional impairment. The data suggest some caution toward applying proliferative steps when considering chondrocytes from elderly male patients for tissue engineering approaches.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX