UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Ergebnis 12 von 72
Datensatz exportieren als...
BibTeX
Comparing Least-squares and Quantile Regression Approaches to Analyzing Median Hospital Charges
Academic emergency medicine, 2012-07, Vol.19 (7), p.866-875
Olsen, Cody S.
Clark, Amy E.
Thomas, Andrea M.
Cook, Lawrence J.
2012
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Olsen, Cody S.
Clark, Amy E.
Thomas, Andrea M.
Cook, Lawrence J.
Titel
Comparing Least-squares and Quantile Regression Approaches to Analyzing Median Hospital Charges
Ist Teil von
Academic emergency medicine, 2012-07, Vol.19 (7), p.866-875
Ort / Verlag
Oxford, UK: Blackwell Publishing Ltd
Erscheinungsjahr
2012
Quelle
MEDLINE
Beschreibungen/Notizen
ACADEMIC EMERGENCY MEDICINE 2012; 19:866–875 © 2012 by the Society for Academic Emergency Medicine Background: Emergency department (ED) and hospital charges obtained from administrative data sets are useful descriptors of injury severity and the burden to EDs and the health care system. However, charges are typically positively skewed due to costly procedures, long hospital stays, and complicated or prolonged treatment for few patients. The median is not affected by extreme observations and is useful in describing and comparing distributions of hospital charges. A least‐squares analysis employing a log transformation is one approach for estimating median hospital charges, corresponding confidence intervals (CIs), and differences between groups; however, this method requires certain distributional properties. An alternate method is quantile regression, which allows estimation and inference related to the median without making distributional assumptions. Objectives: The objective was to compare the log‐transformation least‐squares method to the quantile regression approach for estimating median hospital charges, differences in median charges between groups, and associated CIs. Methods: The authors performed simulations using repeated sampling of observed statewide ED and hospital charges and charges randomly generated from a hypothetical lognormal distribution. The median and 95% CI and the multiplicative difference between the median charges of two groups were estimated using both least‐squares and quantile regression methods. Performance of the two methods was evaluated. Results: In contrast to least squares, quantile regression produced estimates that were unbiased and had smaller mean square errors in simulations of observed ED and hospital charges. Both methods performed well in simulations of hypothetical charges that met least‐squares method assumptions. When the data did not follow the assumed distribution, least‐squares estimates were often biased, and the associated CIs had lower than expected coverage as sample size increased. Conclusions: Quantile regression analyses of hospital charges provide unbiased estimates even when lognormal and equal variance assumptions are violated. These methods may be particularly useful in describing and analyzing hospital charges from administrative data sets.
Sprache
Englisch
Identifikatoren
ISSN: 1069-6563
eISSN: 1553-2712
DOI: 10.1111/j.1553-2712.2012.01388.x
Titel-ID: cdi_proquest_miscellaneous_1027039188
Format
–
Schlagworte
Bias
,
Comparative analysis
,
Confidence intervals
,
Emergency medical care
,
Emergency Service, Hospital - economics
,
Hospital Charges - statistics & numerical data
,
Hospital costs
,
Hospitals
,
Humans
,
Least-Squares Analysis
,
Regression Analysis
,
Research Design
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX