Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 201

Details

Autor(en) / Beteiligte
Titel
Absence of heat shock transcription factor 1 retards the regrowth of atrophied soleus muscle in mice
Ist Teil von
  • Journal of applied physiology (1985), 2011-10, Vol.111 (4), p.1142-1149
Ort / Verlag
Bethesda, MD: American Physiological Society
Erscheinungsjahr
2011
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Effects of heat shock transcription factor 1 (HSF1) gene on the regrowth of atrophied mouse soleus muscles were studied. Both HSF1-null and wild-type mice were subjected to continuous hindlimb suspension for 2 wk followed by 4 wk of ambulation recovery. There was no difference in the magnitude of suspension-related decrease of muscle weight, protein content, and the cross-sectional area of muscle fibers between both types of mice. However, the regrowth of atrophied soleus muscle in HSF1-null mice was slower compared with that in wild-type mice. Lower baseline expression level of HSP25, HSC70, and HSP72 were noted in soleus muscle of HSF1-null mice. Unloading-associated downregulation and reloading-associated upregulation of HSP25 and HSP72 mRNA were observed not only in wild-type mice but also in HSF1-null mice. Reloading-associated upregulation of HSP72 and HSP25 during the regrowth of atrophied muscle was observed in wild-type mice. Minor and delayed upregulation of HSP72 at mRNA and protein levels was also seen in HSF1-null mice. Significant upregulations of HSF2 and HSF4 were observed immediately after the suspension in HSF1-null mice, but not in wild-type mice. Therefore, HSP72 expression in soleus muscle might be regulated by the posttranscriptional level, but not by the stress response. Evidence from this study suggested that the upregulation of HSPs induced by HSF1-associated stress response might play, in part, important roles in the mechanical loading (stress)-associated regrowth of skeletal muscle.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX