Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 105
IEEE transactions on computational social systems, 2024-10, Vol.11 (5), p.6380-6391
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Visualizing Routes With AI-Discovered Street-View Patterns
Ist Teil von
  • IEEE transactions on computational social systems, 2024-10, Vol.11 (5), p.6380-6391
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2024
Quelle
IEL
Beschreibungen/Notizen
  • Street-level visual appearances play an important role in studying social systems, such as understanding the built environment, driving routes, and associated social and economic factors. It has not been integrated into a typical geographical visualization interface (e.g., map services) for planning driving routes. In this article, we study this new visualization task with several new contributions. First, we experiment with a set of AI techniques and propose a solution of using semantic latent vectors for quantifying visual appearance features. Second, we calculate image similarities among a large set of street-view images and then discover spatial imagery patterns. Third, we integrate these discovered patterns into driving route planners with new visualization techniques. Finally, we present VivaRoutes, an interactive visualization prototype, to show how visualizations leveraged with these discovered patterns can help users effectively and interactively explore multiple routes. Furthermore, we conducted a user study to assess the usefulness and utility of VivaRoutes.
Sprache
Englisch
Identifikatoren
ISSN: 2329-924X
eISSN: 2373-7476
DOI: 10.1109/TCSS.2024.3382944
Titel-ID: cdi_proquest_journals_3112218921

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX