Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 71

Details

Autor(en) / Beteiligte
Titel
A physics‐informed machine learning prediction for thermal analysis in a convective‐radiative concave fin with periodic boundary conditions
Ist Teil von
  • Zeitschrift für angewandte Mathematik und Mechanik, 2024-07, Vol.104 (7), p.n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2024
Quelle
Wiley Online Library
Beschreibungen/Notizen
  • The present research is focused on the inspection of unsteady heat dissipation through a radiative‐convective concave profiled fin along with the periodic boundary conditions. Additionally, the long‐short‐term memory machine learning (LSTM‐ML) approach is used in this study to examine the periodic fluctuation in the temperature of the fin. The current research is devoted to solving the highly non‐linear equation using a physics‐informed neural network (PINN) approach. Using the proper dimensionless terms, the associated fin problem is transformed into a non‐dimensional system, and the resulting partial differential equation (PDE) is then numerically solved using the finite difference method (FDM). Using the data‐driven LSTM‐ML technique, the time‐dependent periodic heat transmission in the concave fin is also examined. The impact of various factors on the temperature profile of the concave extended surface is explained, and the results are visually displayed. The temperature distribution in the concave fin diminishes as the convection‐conduction parameter and radiation‐conduction parameter rise. As the amplitude and thermal conductivity parameters improve, so does the temperature of the concave fin. Furthermore, it is demonstrated that although LSTM‐ML and PINN closely matched the FDM findings during the training domain, only PINN with designed characteristics has the potential to predict accurately beyond the trained region by capturing the physics of the problem.
Sprache
Englisch
Identifikatoren
ISSN: 0044-2267
eISSN: 1521-4001
DOI: 10.1002/zamm.202300712
Titel-ID: cdi_proquest_journals_3076790353

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX