Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Coral reef degradation is a worldwide and growing phenomenon triggering habitat transformation from live to dead coral fragments. Macroinvertebrates play key functions in coral reefs, yet research on the size distribution of their community attributes is limited, particularly in the Eastern Tropical Pacific (ETP). We assessed the size distribution of the macroinvertebrate communities in live and dead corals in an ETP coral reef off Colombia. Live coral supported greater macroinvertebrate biomass than dead corals. In live coral, > 90% of total biomass was allocated in the > 8 mm class, which was mostly represented by trapeziid crabs and alpheid shrimps, both obligate symbionts of
Pocillopora
colonies. No differences were found in macroinvertebrate densities between substrates. Macroinvertebrate communities were dominated by crustaceans, though not in every size class. In live coral, Decapoda dominated in all size classes except 0.5–1 mm, which was the only class where dominance of a single taxon was not observed. In dead corals, the dominance of crustaceans was only observed in the 0.5–1 mm class due to high abundances of tanaidaceans. The remaining size classes were dominated by Polychaeta (1–2 mm, 2–4 mm) and Ophiuroidea (4–8 mm, > 8 mm). Our findings highlight that coral degradation events could lead to macroinvertebrate assemblages with lower biomass contributions, higher proportions of small crustaceans (< 1 mm), and taxonomic shifts. Such transitions from live to dead corals could likely impact food-web interactions between macroinvertebrates and higher trophic levels, potentially altering the ecosystem services offered by coral reefs.