Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Programming and computer software, 2024-02, Vol.50 (1), p.73-84
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Multigroup Classification of Firing Pin Impressions with the Use of a Fully Connected Neural Network
Ist Teil von
  • Programming and computer software, 2024-02, Vol.50 (1), p.73-84
Ort / Verlag
Moscow: Pleiades Publishing
Erscheinungsjahr
2024
Quelle
SpringerLink
Beschreibungen/Notizen
  • This paper discusses the use of a fully connected neural network to classify images of firing pin impressions. The purpose of this work is to investigate the effectiveness of clone images of firing pin impressions in improving the quality of training of fully connected neural networks. Another purpose of the work is to estimate the accuracy of multigroup classification of firing pin impressions left by different firearms by using a neural network. The scientific novelty of this work is in the use of augmentation for creating images of firing pin impressions to increase the number of objects in the training dataset and to artificially improve the feature diversity of objects of each class. The conducted investigation shows that the accuracy of classification of the analyzed objects reaches approximately 84% for a fixed value of the classification criterion and 94–98% when the classification is carried out based on three maximum signals on output neurons. The work is of interest to developers of automated ballistic identification systems.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX