Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Journal of optical communications and networking, 2024-08, Vol.16 (8), p.D1-D9
2024

Details

Autor(en) / Beteiligte
Titel
Enhancing secret key distribution through advanced color modulation in visible light communication
Ist Teil von
  • Journal of optical communications and networking, 2024-08, Vol.16 (8), p.D1-D9
Ort / Verlag
Piscataway: Optica Publishing Group
Erscheinungsjahr
2024
Link zum Volltext
Quelle
IEL
Beschreibungen/Notizen
  • Visible light communication (VLC) has emerged as a dynamic area of research poised to revolutionize high-speed wireless communication. VLC technology uses light-emitting diodes (LEDs) within existing infrastructure to emit light within the visible spectrum. VLC complements traditional radio frequency (RF) communications, addressing its inherent limitations and drawbacks. To navigate the demands of modern urban environments, VLC systems must prioritize secure data transmission, accessibility, and economic feasibility, particularly within the framework of smart cities. We introduce what is to our knowledge a novel privacy-enhanced VLC system for optical wireless communication. Leveraging color data modulation techniques and the intricacies of a hyperchaotic three-dimensional map, this innovative approach ensures robust security. By employing diverse LED colors for data transmission and exploiting the unpredictable mathematical properties of hyperchaotic maps, enhanced privacy is achieved. The performance of the proposed system was rigorously evaluated through various tests, manipulating initial control parameters of the encryption process with the hyperchaotic map, as well as adjusting message length and content. Tests were conducted over a 1 m connection distance at a symbol transmission rate of 2 baud. Remarkably, the proposed system demonstrated high accuracy in message recovery, achieving a symbol error rate (SER) of only 0.02 at an incident optical power of 22 µW. We highlight the critical importance of precise decryption parameter values in the proposed method, demonstrating the necessity for accuracy within the range of {10}^{- 15} for each decryption parameter; it underscores the indispensability of meticulous parameter calibration to ensure the correct decryption of transmitted symbols. These results pave the way for applications where absolute security is imperative, particularly in smart city environments, such as for key distribution purposes.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX