Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Defect inspection is required in various fields, and many researchers have attempted deep-learning algorithms for inspections. Deep-learning algorithms have advantages in terms of accuracy and measurement time; however, the reliability of deep-learning outputs is problematic in precision measurements. This study demonstrates that iterative estimation using neighboring feature maps can evaluate the uncertainty of the outputs and shows that unconfident error predictions have higher uncertainties. In ghost imaging using deep learning, the experimental results show that removing outputs with higher uncertainties improves the accuracy by approximately 15.7%.
Sprache
Englisch
Identifikatoren
ISSN: 1559-128X
eISSN: 2155-3165
DOI: 10.1364/AO.511817
Titel-ID: cdi_crossref_primary_10_1364_AO_511817
Format
–
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von bX