Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 7763
Quarterly journal of the Royal Meteorological Society, 2024-04, Vol.150 (760), p.1601-1623
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Underlying physical mechanisms of winter precipitation extremes over India's high mountain region
Ist Teil von
  • Quarterly journal of the Royal Meteorological Society, 2024-04, Vol.150 (760), p.1601-1623
Ort / Verlag
Chichester, UK: John Wiley & Sons, Ltd
Erscheinungsjahr
2024
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • Extreme precipitation events (EPEs) are among the most pervasive weather hazards in the western Himalayan region (WHR), posing widespread damage to life, infrastructure, and agriculture. This study investigates the synoptic and large‐scale characteristics linked to winter precipitation extremes over the WHR. EPEs are identified as events surpassing the 95th percentile threshold. A composite analysis is employed using two reanalyses—the fifth‐generation European Centre for Medium‐Range Weather Forecasts Reanalysis (ERA5) and the Indian Monsoon Data Assimilation and Analysis (IMDAA)—to elucidate the synoptic conditions conducive to EPEs. Our findings suggest that EPEs in the WHR are linked to an intensified subtropical westerly jet, characteristically shifted to south than normal. Enhanced kinetic energy in the upper troposphere, attributed to increased baroclinic instability, reinforces moisture convergence and strengthens synoptic‐scale circulation, triggering deep convection and supporting EPEs. Notably, the interplay of pronounced Rossby waves sinking over the WHR and regional orography significantly modulates the intensity of western disturbances (WDs). Employing clustering analysis, we observed that the strongest EPEs are linked to anomalous vorticity in the upper to middle troposphere, together with deep convection via strengthened WDs, suggesting the potential role of large‐scale influences. Using Lagrangian method, we identify that the Arabian Sea is the primary moisture source for EPEs in the WHR. We further delved into the role of large‐scale connections and EPEs through quasi‐resonant amplification (QRA) analysis. The findings unveil distinct QRA fingerprints in meridional temperature gradients along with notably magnified, quasi‐stationary midlatitude planetary waves characterized by zonal wave numbers 6/7/8 (baroclinic waves) contributing to EPEs. Overall, our results highlight the underlying physical mechanisms for winter precipitation extremes, emphasizing QRA's role in amplifying planetary waves and promoting EPEs, underscoring the WHR's vulnerability to evolving climatic conditions. This figure illustrates the underlying physical processes leading to extreme precipitation events over the western Himalayas during the winter season. Note that this graphical figure may not represent the actual political boundaries/orography.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX