Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 23

Details

Autor(en) / Beteiligte
Titel
The influence of potassium binding to the selectivity filter on potassium channel conformation and function
Ort / Verlag
ProQuest Dissertations & Theses
Erscheinungsjahr
1999
Link zum Volltext
Quelle
ProQuest Dissertations & Theses A&I
Beschreibungen/Notizen
  • Voltage-gated potassium (Kv) channels are multi-ion, single-file pores that regulate the transmembraneous flow of potassium (K+) in excitable cells. The pore has been modeled as a rigid structure allowing for a high degree of ionic selectivity (K+ relative to Na +) and flux in normal physiological solutions. This model was recently supported by interpretations based on the crystal structure obtained from a K+ channel from Streptomyces lividans, KcsA (Doyle et al., 1998). However, the pore of Kv channels undergoes conformational. changes during gating and the relative permeability of K+ and Na+ change during these processes. The activation and inactivation gates respond to changes in membrane voltage and the rates of these conformational changes are modulated by K+. In addition, some Kv channels do not exclude Na+ under all conditions. For example, Kv2.1 conducts Na+ in the absence of K+, displays an affinity-based selectivity mechanism in the presence of K +, and shows a cation-dependence for TEA block. We found that the competitive interaction between K+ and Na+ at the selectivity filter is determined not only by the S5-S6 loop but also by the scaffolding that holds the S5-S6 loop. This suggests that the scaffolding contributed to the three dimensional orientation of the selectivity filter. We also found that occupancy of the external K+ binding site associated with the selectivity filter alters the channel conformation both internal and external to the selectivity filter. These K+-dependent conformational changes correlate well with rate of slow inactivation in Kv2.1. In channels not occupied by K+, W interacted with the modulatory site with μM affinity. In channels occupied by a single K+, the modulatory site bound K+ with an affinity of ∼10 mM. These results indicate that ion-ion interactions within the selectivity filter provide the means for high selectivity with high throughput in potassium channels.
Sprache
Englisch
Identifikatoren
ISBN: 9780599595347, 0599595345
Titel-ID: cdi_proquest_journals_304501232
Format
Schlagworte
Neurology, Neurosciences

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX