Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Optimizing building material selection: A machine learning approach for efficient concrete compressive strength forecasting
Ist Teil von
Journal of intelligent & fuzzy systems, 2024-04, Vol.46 (4), p.10269
Ort / Verlag
Amsterdam: IOS Press BV
Erscheinungsjahr
2024
Beschreibungen/Notizen
Price changes in construction materials have a significant impact on building construction projects. Such price variations occur at random and at varying rates over time. A system that can estimate the magnitude and quantity of the change in material prices with reasonable accuracy is required. The primary goal is to create a machine-learning model that can predict the type of building material chosen based on environmental factors. The compressive strength of concrete is critical in defining its mechanical qualities. Long laboratory testing is needed to determine the compressive strength of concrete. The capacity of powerful machine learning algorithms to forecast concrete compressive strength speeds up these lengthy experimental methods while also lowering expenses. This study provides abilities to precisely anticipate and categorize numerous qualities and traits of distinct materials. The framework includes a broad dataset that details materials, composition, and performance characteristics. Machine learning algorithms such as logistic regression (LR), decision trees (DT), and random forests (RF) train models on the training data. The models are hyper-parameter tweaked and feature developed to achieve the most outstanding performance. The k-fold method is used throughout the training and assessment phase to guarantee robustness and reduce bias. The F1 score and Receiver Operating Characteristic-Area Under Curve (ROC-AUC) curve are two performance measures used to measure how accurate and predictive the trained models are. The study findings provide insights into the qualities of the materials, facilitating improved material selection, quality assurance, and decision-making in the building sector. In the analyses, the best accuracy value was 99.92%, and the precision value was 88.83% using the LR algorithm. As a result, it was determined that the LR algorithm had the least execution 57.826 ms, and is thus the most suitable for use in concrete compressive strength estimation.