Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 40
Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (15), p.8952-8962
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Enhancing ion storage and transport in Ti3C2Tz MXene via a “sacrificial cations” strategy
Ist Teil von
  • Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (15), p.8952-8962
Ort / Verlag
Cambridge: Royal Society of Chemistry
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • MXenes have gained significant attention in supercapacitors (SCs) due to their high electronic conductivity and tunable surface terminations. However, challenges arise during etching such as interlayer restacking and the presence of inactive –F terminations that impede the full utilization of their intrinsic capabilities. To tackle these issues, we propose a “sacrificial cation” strategy involving electrochemistry-driven cation intercalation (ECI) and calcination. Specifically, alkylammonium cations with different chain lengths are intercalated into the interlayers of Ti3C2Tz MXene by ECI, and then these intercalated cations are removed by pyrolysis at 400 °C. This approach aims to augment interlayer spacing and introduce a substantial number of –O surface terminations, thereby enhancing capacitance contributions. The resulting dodecyl-trimethylammonium cation intercalated Ti3C2Tz after calcination (T-C8-C) presents high volumetric capacitances of 1737.6 F cm−3 at 1 A g−1. T-C8-C, when integrated with nitrogen-doped activated carbon (NAC) into an asymmetric SC, achieves outstanding volumetric energy density (56.7 W h L−1 at 0.15 kW L−1), high power densities at elevated energy densities (30.1 kW L−1 at 36.7 W h L−1), and remarkable lifespan (96.2% retention after 30 000 cycles at 10 A g−1). This strategy provides valuable insights for developing high-performance 2D materials in energy storage through interlayer spacing adjustment and surface modification.
Sprache
Englisch
Identifikatoren
ISSN: 2050-7488
eISSN: 2050-7496
DOI: 10.1039/d3ta07867a
Titel-ID: cdi_proquest_journals_3039145369

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX