Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 65
Nonlinear dynamics, 2024-04, Vol.112 (8), p.6517-6533
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Inverse scattering transform for the nonlocal Gerdjikov–Ivanov equation with simple and double poles
Ist Teil von
  • Nonlinear dynamics, 2024-04, Vol.112 (8), p.6517-6533
Ort / Verlag
Dordrecht: Springer Netherlands
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • We systematically investigate the nonlocal Gerdjikov-Ivanov (nGI) equation with non-vanishing boundary conditions by means of the inverse scattering transform method. We define eigenfunctions and scattering matrix, then analyze their analytical, symmetric and asymptotic properties. With the help of the inverse scattering transform, an appropriate Riemann-Hilbert problem is constructed. The nGI equation displays drastically different symmetry properties compared to its local counterpart, which leads to a disparate discrete spectral distribution. We then deduce the general expressions of N -simple and N -double poles solitons of the nGI equation under the reflectionless potential. What’s more, novel dynamical behaviors of these solutions are not only exhibited graphically with 3D and projection profiles, wave propagation with the x -axis, but also analyzed detailedly. These solutions play a crucial role in revealing the abundant dynamics of solitons and advancing our comprehension of nonlocal nonlinear phenomena.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX