Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 8907

Details

Autor(en) / Beteiligte
Titel
A Novel Transient PDE Model for Development of Highly Sensitive Microthermal Expansion-Based Angular Motion Sensor
Ist Teil von
  • IEEE sensors journal, 2024-03, Vol.24 (6), p.8045-8053
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2024
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • We propose a novel transient partial differential equation (PDE) model for the development of highly sensitive microthermal expansion-based angular motion (<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>TEAM) sensors based on the study of time-dependent response. With the efficient prediction of thermal time constant (<inline-formula> <tex-math notation="LaTeX">\tau ^{\ast} </tex-math></inline-formula>) based on the PDE model, which is >2200 times faster than 3-D CFD simulation (32.67 s versus >20 h) and was validated by the experimental results, the parametric analysis has been conducted for design optimization. The <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>TEAM sensors with three pairs of temperature detectors (TDs) were adopted for the systematic study of the PWM frequency (<inline-formula> <tex-math notation="LaTeX">{f} _{\text {PWM}} </tex-math></inline-formula>) effect on the sensor performance to identify the optimal <inline-formula> <tex-math notation="LaTeX">{f} _{\text {PWM}} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">{f} _{\text {o}} </tex-math></inline-formula>), which can optimize the sensitivity by >11%. Based on the time-dependent analysis of our PDE model, <inline-formula> <tex-math notation="LaTeX">{f} _{\text {o}} </tex-math></inline-formula> was verified to be dominated by the thermal response of the sensor. A generalized "Phase Diagram" regarding the normalized sensitivity (<inline-formula> <tex-math notation="LaTeX">S^{\ast} </tex-math></inline-formula>) was presented, for the first time, as a function of <inline-formula> <tex-math notation="LaTeX">{f} _{\text {PWM}} </tex-math></inline-formula> and the normalized heater-to-detector distance (<inline-formula> <tex-math notation="LaTeX">{D} _{x}/{L} _{x} </tex-math></inline-formula>). Accordingly, an optimal region, where <inline-formula> <tex-math notation="LaTeX">S^{\ast} \ge0.95 </tex-math></inline-formula>, was identified to successfully develop an SF 6-based <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>TEAM sensor with a high sensitivity of 1.5631 mV/°/s, which was >3.5 times as large as that of the N2-based sensor (0.4203 mV/°/s). In particular, the SF6-based sensor reveals an excellent normalized sensitivity of 0.0487 mV/°/s/mW compared to the reported thermal angular motion sensors (AMSs); thus, the comprehensive study based on the PDE model enables the significant improvement of sensor sensitivity and would be useful for system-level integration in the future.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX