Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 254
Transactions of the Institute of Measurement and Control, 2024-03, Vol.46 (5), p.973-991
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
KPCA-WPHM-SCNs-based remaining useful life prediction method for motor rolling bearings
Ist Teil von
  • Transactions of the Institute of Measurement and Control, 2024-03, Vol.46 (5), p.973-991
Ort / Verlag
London, England: SAGE Publications
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Motor rolling bearings are the important supporting components of motors. It can ensure the stable operation of motor equipment in the power grid, and bearing life prediction of it is a key issue. To solve the problem of low accuracy of remaining useful life (RUL) prediction for motor rolling bearings, a neural network model based on Weibull proportional hazards model (WPHM) and stochastic configuration networks (SCNs) is proposed. To better extract and analyze features of the bearing vibration signal in both time and frequency domains, kernel principal component analysis (KPCA) is used to reduce the dimensionality of the data. Then, a WPHM model using the top three contributing feature parameters is built, which sets the start time based on the failure rate curve and reliability function. Finally, the validity of the model is verified with the rolling bearing full life cycle dataset from the IEEE PHM 2012 Data Challenge, and a comparison with other machine learning models shows that the accuracy of the proposed model in RUL prediction is higher.
Sprache
Englisch
Identifikatoren
ISSN: 0142-3312
eISSN: 1477-0369
DOI: 10.1177/01423312231191569
Titel-ID: cdi_proquest_journals_2929419282

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX