Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
IEEE/CAA journal of automatica sinica, 2024-03, Vol.11 (3), p.803-805
Ort / Verlag
Piscataway: Chinese Association of Automation (CAA)
Erscheinungsjahr
2024
Quelle
IEEE Xplore
Beschreibungen/Notizen
Dear Editor, This letter presents a novel segmentation approach that leverages dendritic neurons to tackle the challenges of medical imaging segmentation. In this study, we enhance the segmentation accuracy based on a SegNet variant including an encoder-decoder structure, an upsampling index, and a deep supervision method. Furthermore, we introduce a dendritic neuron-based convolutional block to enable nonlinear feature mapping, thereby further improving the effectiveness of our approach. The proposed method is evaluated on medical imaging segmentation datasets, and the experimental results demonstrate that it is superior to state-of-the-art methods in terms of performance.