Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Prediction of the hot metal silicon content in blast furnace based on extreme learning machine
Ist Teil von
International journal of machine learning and cybernetics, 2018-10, Vol.9 (10), p.1697-1706
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Silicon content in hot metal is an important indicator for the thermal condition inside the blast furnace in the iron-making process. The operators often refer the silicon content and its change trend for the guidance of next production. In this paper, we establish the neural network model for the prediction of silicon content in hot metal based on extreme learning machine (ELM) algorithm. Considering the imbalanced operating data, weighted ELM (W-ELM) algorithm is employed to make prediction for the change trend of silicon content. The outliers hidden in the real production data often tend to undermine the accuracy of prediction model. First, an outlier detection method based on W-ELM model is proposed from a statistical view. Then we modified the ordinary ELM and W-ELM algorithms in order to reduce the interference of outliers, and proposed two enhanced ELM frameworks respectively for regression and classification applications. In the simulation part, the real operating data is employed to verify the better performance of the proposed algorithm.