Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Peterson’s Intermediate Syllogisms, generalizing Aristotelian syllogisms by intermediate quantifiers ‘Many’, ‘Most’ and ‘Almost all’, are studied. It is demonstrated that, by associating certain values V, W and U on standard Łukasiewicz MV-algebra with the first and second premise and the conclusion, respectively, the validity of a corresponding intermediate syllogism is determined by a simple MV-algebra (in-)equation. Possible conservative extensions of Peterson’s system are discussed. Finally it is shown that Peterson’s bivalued intermediate syllogisms can be viewed as fuzzy theories in Pavelka’s fuzzy propositional logic, i.e. a fuzzy version of Peterson’s Intermediate Syllogisms is introduced.