Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Additive subdistribution hazards regression for competing risks data in case‐cohort studies
Ist Teil von
  • Biometrics, 2023-12, Vol.79 (4), p.3010-3022
Ort / Verlag
United States: Blackwell Publishing Ltd
Erscheinungsjahr
2023
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • In survival data analysis, a competing risk is an event whose occurrence precludes or alters the chance of the occurrence of the primary event of interest. In large cohort studies with long‐term follow‐up, there are often competing risks. Further, if the event of interest is rare in such large studies, the case‐cohort study design is widely used to reduce the cost and achieve the same efficiency as a cohort study. The conventional additive hazards modeling for competing risks data in case‐cohort studies involves the cause‐specific hazard function, under which direct assessment of covariate effects on the cumulative incidence function, or the subdistribution, is not possible. In this paper, we consider an additive hazard model for the subdistribution of a competing risk in case‐cohort studies. We propose estimating equations based on inverse probability weighting methods for the estimation of the model parameters. Consistency and asymptotic normality of the proposed estimators are established. The performance of the proposed methods in finite samples is examined through simulation studies and the proposed approach is applied to a case‐cohort dataset from the Sister Study.
Sprache
Englisch
Identifikatoren
ISSN: 0006-341X, 1541-0420
eISSN: 1541-0420
DOI: 10.1111/biom.13821
Titel-ID: cdi_proquest_journals_2903748628

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX