Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Constrained Control of Large Graph-based MDPs Under Measurement Uncertainty
Ist Teil von
IEEE transactions on automatic control, 2023-11, Vol.68 (11), p.1-16
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2023
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
We consider controlling a graph-based Markov decision process (GMDP) with a control capacity constraint given only uncertain measurements of the underlying state. We also consider two special structural properties of GMDPs, called Anonymous Influence and Symmetry. Large-scale spatial processes such as forest wildfires, disease epidemics, opinion dynamics, and robot swarms are well-modeled by GMDPs with these properties. We adopt a certainty-equivalence approach and derive efficient and scalable algorithms for estimating the GMDP state given uncertain measurements, and for computing approximately optimal control policies given a maximum-likelihood state estimate. We also derive sub-optimality bounds for our estimation and control algorithms. Unlike prior work, our methods scale to GMDPs with large state-spaces and explicitly enforce a control constraint. We demonstrate the effectiveness of our estimation and control approach in simulations of controlling a forest wildfire using a model with <inline-formula><tex-math notation="LaTeX">10^{1192}</tex-math></inline-formula> total states.