Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Wildlife Image Recognition in Miyun District Based on BS-ResNeXt-50
Ist Teil von
Linye kexue (1979), 2023-01, Vol.59 (8), p.112
Ort / Verlag
Beijing: Chinese Society of Forestry
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
[Objective】In the wild environment, the background of wildlife images captured by camera traps is complex,which poses a challenge for identifying wild animals in images with a large number of images and a wide variety of wildlife species. Based on convolutional neural network, this research aims to improve the existing structure and so as to implement the automatic recognition for wildlife images.【Method】In this study, 2 712 wildlife images of 8 categories were taken from Wuling Mountain Beijing Nature Reserve, Miyun Districts, Beijing. The Auto Augment policy was randomly selected from 14augmentation policies to add noise to the images. SENet and BlurPool were used to construct an improved network based on ResNeXt-50: SE-ResNeXt-50 for enhancement feature extraction, BP-ResNeXt-50 for Shift-invariance maintenance, and BSResNeXt-50 for both. The influences of fixed learning rate, segmented learning rate, and cosine annealing learning rate on the accuracy of the BS ResNeXt-50 network were tested on the self-bu