Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Periodica polytechnica. Transportation engineering, 2023-10, Vol.51 (4), p.357-374
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Benchmarking Travel Time and Demand Prediction Methods Using Large-scale Metro Smart Card Data
Ist Teil von
  • Periodica polytechnica. Transportation engineering, 2023-10, Vol.51 (4), p.357-374
Ort / Verlag
Budapest: Periodica Polytechnica, Budapest University of Technology and Economics
Erscheinungsjahr
2023
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Urban mass transit systems generate large volumes of data via automated systems established for ticketing, signalling, and other operational processes. This study is motivated by the observation that despite the availability of sophisticated quantitative methods, most public transport operators are constrained in exploiting the information their datasets contain. This paper intends to address this gap in the context of real-time demand and travel time prediction with smart card data. We comparatively benchmark the predictive performance of four quantitative prediction methods: multivariate linear regression (MVLR) and semiparametric regression (SPR) widely used in the econometric literature, and random forest regression (RFR) and support vector machine regression (SVMR) from machine learning. We find that the SVMR and RFR methods are the most accurate in travel flow and travel time prediction, respectively. However, we also find that the SPR technique offers lower computation time at the expense of minor inefficiency in predictive power in comparison with the two machine learning methods.
Sprache
Englisch
Identifikatoren
ISSN: 0303-7800
eISSN: 1587-3811
DOI: 10.3311/PPtr.22252
Titel-ID: cdi_proquest_journals_2874143613

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX