Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 96

Details

Autor(en) / Beteiligte
Titel
Heterointerface engineering of cobalt molybdenum suboxide for overall water splitting
Ist Teil von
  • Nanoscale, 2023-09, Vol.15 (37), p.15219-15229
Ort / Verlag
England: Royal Society of Chemistry
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Highly active and earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are of great significance for sustainable hydrogen generation through alkaline water electrolysis. Here, with an aim to enhance the bifunctional electrocatalytic activity of cobalt molybdate towards overall water splitting, we demonstrate a simple method involving the modulation of the cobalt to molybdenum ratio and creation of phase-modulated heterointerfaces. Samples with varying Co/Mo molar ratios are obtained via a microwave-assisted synthesis method using appropriate starting precursors. The synthesis conditions are modified to create a heterointerface involving multiple phases of cobalt molybdenum suboxides (CoO/CoMoO 3 /Co 2 Mo 3 O 8 ) supported on Ni foam (NF). Detailed electrochemical studies reveal that modulating the composition and hence the interface can tweak the bifunctional electrocatalytic activity of the material for HER and OER and thus improve the overall water splitting efficiency with very high durability over 500 h. To further evaluate the practical applicability of the studied catalyst in water splitting, an alkaline electrolyser is fabricated with the optimized cobalt molybdenum suboxide material (CMO-1.25) as a bifunctional electrocatalyst. A current density of 220 mA cm −2 @1.6 V and 670 mA cm −2 @1.8 V was obtained, and the device showed very good long-term durability. Highly active and earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are of great significance for sustainable hydrogen generation through alkaline water electrolysis.
Sprache
Englisch
Identifikatoren
ISSN: 2040-3364
eISSN: 2040-3372
DOI: 10.1039/d3nr02458j
Titel-ID: cdi_proquest_journals_2870032426

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX