Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Synthesis and Structure‐Driven Acid‐Catalyzed Degradation of Benzoic Cyclic Acetal‐Labeled PEG Precursors toward Shell‐Sheddable PLA Block Copolymer Synthesis
Ist Teil von
Macromolecular chemistry and physics, 2023-08, Vol.224 (16), p.n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2023
Quelle
Access via Wiley Online Library
Beschreibungen/Notizen
The synthesis of acid‐degradable poly(ethylene glycol) (PEG) precursors labeled with benzoic cyclic acetal (BzCA) is reported. To get an insight into their acid‐catalyzed hydrolysis, three precursors are designed with spacers exhibiting different inductive effects between PEG and BzCA linkage. The 1H‐NMR analysis confirms the order of increasing acid‐catalyzed hydrolysis to be ether > ester oxygen > ester carbonyl, which can be attributed to their ability to stabilize benzylic carbocation intermediates formed during hydrolysis. The formed precursors tend to be stable under a tin‐catalyzed condition for ring opening polymerization of lactide (LA), thus enabling the synthesis of well‐controlled acid‐degradable PEG‐based PLA block copolymers labeled with BzCA linkage at the block junction. When being exposed to acidic pH, the copolymers degrade through the cleavage of the junction BzCA linkages. These results guide the design principle of acid‐degradable shell‐sheddable BzCA‐bearing block copolymers for control over their acid‐catalyzed degradation and potentially drug release kinetics.
Aid‐degradable poly(ethylene glycol) precursors labeled with benzoic cyclic acetal groups showing an increasing order of acid‐catalyzed hydrolysis rate as ether>ester oxygen>ester carbonyl spacers are stable under a tin‐catalyzed condition for ring opening polymerization of lactide, thus enabling the synthesis of well‐controlled acid‐degradable shell‐sheddable block copolymers with control over acid‐catalyzed degradation and potentially drug release kinetics.